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Abstract.

'- Plane diffraction gratings with period 21 lying in a strip

0 < y < h in the x,y-plane are studied. A Rayleigh-Bloch (R-B) wave for

a grating is the response (xypq) to a plane wave(( exp (i(px -qy))

incident from y > h (p E R, q > 0). Thus (A + (p 2+ q2 )) + -0 in the

domain G above the grating, p+ atisfies the Dirichlet or Neumann boundary/
p/

condition on Gand fory > h N..
I P+(x,y,p,q) - (2r)-1 exp {i(px - qy)}

+ C c,(p,q) exp (i p. x + qt y}

(p+£) 
2 <p2+q 2

+ Z c+(p,q) exp {i pix - ((p+ - p2- q2 ) 1 2 y}

(p+i) 
2>p2 +q2

where (p,,q,) = (p + £,(p 2 + q2 - (p + x)
2 )1/2 ) and the summations are

p over all integers Z satisfying the indicated inequalities.. The paper

presents a construction of R-B waves and a proof that

(4 (x~y~pq) /p I R, q > OD) is a complete orthogonal family in Lf#y(G) in

the sense of the Plancherel theory. ,,
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Introduction.

The phenomena associated with the scattering of acoustic and

electromagnetic waves by periodic surfaces play a role in many areas of

applied physics and engineering. Optical gratings date from the nineteenth

century and are still used by spectroscopists. More recently, gratings

have been used as coupling devices in integrated optics [5]. Trains of

surface waves on the oceans are natural diffraction gratings which

influence the scattering of electromagnetic waves [31] and underwater

sound [13). Similarly, the surface of a crystal acts as a diffraction

grating for the scattering of atomic beams [141. The literature on

diffraction gratings and their applications is very large. References to

work done before 1967 may be found in the monograph by Stroke in the

Handbuch der Physik [29]. More recent references are given in the papers

of Fortuin [13], Millar [20], Jordan and Lang [16] and De Santo [9], among

others.

The first theoretical studies of scattering by diffraction gratings

are due to Rayleigh. His "Theory of Sound" Volume 2, 2nd Edition, published

in 1896 [22], contains an analysis of the scattering of a monochromatic

plane wave normally incident on a grating with a sinusoidal profile. In

a subsequent paper (23] he extended the analysis to oblique incidence.

Rayleigh assumed in his work that in the half-space above the grating the

reflected wave is a superposition of the specularly reflected plane wave, a

finite number of secondary plane waves propagating in the directions of

the higher order grating spectra of optics, and an infinite sequence of

evanescent waves whose amplitudes decrease exponentially with distance
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from the grating. The validity of Rayleigh's assumption for general

grating profiles was realized in the early 1930's (111, following Bloch's

work [4] on the analogous problem of de Broglie waves in crystals. Wa-res

of this type will be called Rayleigh-Bloch waves (R-B waves for brevity)

in this report.

The goal of Rayleigh's work and the literature based on it was

to calculate the relative amplitudes and phases of the components of the

R-B waves and several methods for doing this have been developed. L. A.

Weinstein [32] and J. A. De Santo [6, 7] have given exact solutions to

the problem of the scattering of monochromatic plane waves by a comb

grating; i.e., an array of periodically spaced infinitesimally thin

parallel plates of finite depth mounted perpendicularly on a plane. For

gratings with sinusoidal profiles, infinite systems of linear equaltions

for the complex reflection coefficients have been given by J. L. Uretsky

(30] and J. A. De Santo (8]. Numerical solutions of these equations have

been given by A. K. Jordan and R. H. Lang [16] whose paper contains

references to numerical work by other authors.

The work referenced above provides a satisfactory understanding

of the scattering of the steady beams used in classical spectroscopy.

However, modern applications of gratings in areas such as integrated

optics and underwater sound require an understanding of how transient

electromagnetic and acoustic fields, such as pulsed laser beams and sonar

signals, are scattered by diffraction gratings. The existing theory of

R-B waves is inadequate for the analysis of these problems.

The purpose of this report is to present an eigenfunction expan-

sion for diffraction gratings in which the eigenfunctions are R-B waves.

The theory can be used to analyze the scattering of transient fields by

Alt 4 _
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diffraction gratings. The analysis, which parallels the author's work

on the scattering of transient sound waves by bounded obstacles [34, 35,

37] will be given in a separate report.

The theory of R-B wave expansions given below is a generalization

of T. Ikebe's theory of distorted plane wave expansions [15], first

developed for quantum mechanical potential scattering and subsequently

extended to a variety of scattering problems [2, 19, 25, 26, 27, 35].

The theory is based on the study of a linear operator A, called here the

grating propagator, which is a selfadjoint realization of the negative

Laplacian acting in the Hilbert space of square integrable acoustic fields.

The principal result of this report is a representation of the spectral

family of A by means of R-B waves. The R-B wave expansions follow as a

corollary.

A key step in developing R-B wave expansions is the introduction

of the reduced grating propagator A which depends on the wave momentump

p. The Hilbert space theory of such operators was initiated in a recent

article by H. D. Alber [3]. Here Alber's powerful method of analytic

continuation of the resolvent of Ap is used to construct the R-B wave

eigenfunctions.

The derivation of the R-B wave expansions given below is

restricted, for brevity, to the case of two-dimensional wave propagation.

Specifically, the waves are assumed to be solutions of the wave equation

in a two-dimensional grating domain and to satisfy the Dirichlet or

Neumann boundary condition on the grating profile. These problems

provide models for the scattering of sound waves by acoustically soft or

rigid gratings and of TE or TM electromagnetic waves by perfectly
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conducting gratings. It will be seen that the methods employed are also

applicable to three-dimensional (and n-dimensional) grating problems.

Even with the restriction to the two-dimensional case, the

analytical work needed to derive and fully establish eigenfunction

expansions for diffraction gratings is necessarily intricate and lengthy.

This is clear from examination of the simpler case of scattering by

bounded obstacles presented in the author's monograph [34]. Therefore,

to make the work accessible to potential users, this report presents

only the concepts and results of the theory, together with the principal

ideas needed to derive them. Complete analytical details and proofs are

provided in a companion report.

The remainder of this report is organized as follows. §1 contains

the definitions of the class of grating domains and corresponding grating

propagators. §2 contains the definition of the R-B waves and their

classification into surface waves and diffracted plane waves. The concept

of the reduced grating propagator A is introduced in §3 and the R-B
p

surface and diffracted plane waves are shown to be eigenfunctions and

generalized eigenfunctions, respectively, of A . The section includes
p

the spectral analysis of the reduced propagator A corresponding to theasp

degenerate grating whose profile is a straight line. In subsequent

sections the R-B wave expansions for general gratings are developed as

perturbations of this special case.

In §4 the analytic continuation of the resolvent of Ap to a

suitable Riemann surface is constructed by the method of Alber. The

method leads to a particularly strong form of the limiting absorption

principle. In §5 the results of §4 are used to construct the R-B



eigenfunctions for A and to derive corresponding spectral representations
p

and eigenfunction expansions for Ap. In §6 these results are used to

construct the corresponding R-B wave spectral representations and eigen-

function expansions for the grating propagator A. §7 contains concluding

remarks concerning extensions of the theory and unsolved problems.

I.I

-1i
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(1.1), (1.2) can be written

(1.6) % C G C RO for some h >0

and the translation invariance (1.3) takes the form

(1.7) G + (a,0) - G

where a > 0 is the primitive period of G.

The eigenfunction expansion theory for R-B waves that satisfy

the Dirichlet boundary condition is developed below for arbitrary grating

domains. For R-B waves that satisfy the Neumann boundary condition the

following additional conditions are imposed on XG, the frontier of G.

(1.8) G has the local compactness property, and

(1.9) there exists an x0 E R such that the set

aG n {(x0,Y) I y > 0} is finite and each

(x0 ,y) in the set has a neighborhood in R
2

in which aG is a regular curve of class C3.

Condition (1.8) was introduced in [34] where it was denoted by G E LC.

It is a mild regularity property of 3G. A simple sufficient condition

for G E LC is the "finite tiling condition" of [34, p. 63]. Grating

domains that satisfy (1.8) and (1.9) will be said to have property S,

written G E S. The class includes all the piece-wise smooth gratings

that arise in applications. Examples include the domains

G - (X I y > h(x)} where h(x) is bounded, piece-wise smooth and has

period a. A special case is De Santo's comb grating for which



§1. Grating Domains and Grating Propagators.

The plane diffraction gratings that are studied in this report

are the boundaries of the class of planar domains G defined by the

following properties.

(1.1) G is contained in a half-plane.

(1.2) G contains a smaller half-plane.

(1.3) G is invariant under translation through a

distance a > 0.

Domains with these properties will be called grating domains. The half-

plane of (1.2) is necessarily parallel to that of (1.1) and the transla-

tion of (1.3) is necessarily parallel to the edges of these half-planes.

The smallest a > 0 for which (1.3) holds is called the primitive grating

period. It exists for all gratings except the degenerate grating for

which G is a half-plane.

It will be convenient to introduce Cartesian coordinates

(1.4) X - (x,y) E R2

in the plane of G such that the x-axis is parallel to the edges of the

half-planes of (1.1), (1.2) and to identify G with the corresponding

domain (open connected set) G c R2. With this convention if

(1.5) R2 - (X e R2 I y > c}c

then, for a suitable orientation of the coordinate axes, conditions

7
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(1.1), (1.2) can be written

(1.6) 2 C G C R2 for some h > 0

and the translation invariance (1.3) takes the form

(1.7) G + (a,O) G

where a > 0 is the primitive period of G.

The eigenfunction expansion theory for R-B waves that satisfy

the Dirichlet boundary condition is developed below for arbitrary grating

domains. For R-B waves that satisfy the Neumann boundary condition the

following additional conditions are imposed on DG, the frontier of G.

(1.8) G has the local compactness property, and

(1.9) there exists an x0 E R such that the set

aG r) {(x0 ,y) I y > 0} is finite and each

(x0 ,y) in the set has a neighborhood in R
2

in which aG is a regular curve of class C3 .

Condition (1.8) was introduced in (341 where it was denoted by G E LC.

It is a mild regularity property of 3G. A simple sufficient condition

for G C LC is the "finite tiling condition" of (34, p. 63]. Grating

domains that satisfy (1.8) and (1.9) will be said to have property S,

written G = S. The class includes all the piece-wise smooth gratings

that arise in applications. Examples include the domains

G - {X I y > h(x)} where h(x) is bounded, piece-wise smooth and has

period a. A special case is De Santo's comb grating for which
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h > 0 for x - 0
(1.10) h(x) <

0 for -a/2 < x < 0 and 0 < x < a/2

The Hilbert space theory of solutions of the wave equation in

arbitrary domains G C Rn, developed by the author in [33, 34], provides

the foundation for the analysis of scattering by diffraction gratings

given below. The basic Hilbert space of the theory is the Lebesgue

space L2(G) with scalar product

(1.11) (u,v) = u(X) v(X) dX

In addition, the definition of the grating propagators makes use of the

Sobolev spaces

(1.12) L2(G) = L2 (G) n {u I Du1D2u e L2 (G) for %, + z < m}

where D, = 3/3x, D2 = 3/3y and m is a positive integer, and the space

(1.13) L (A,G) = L'(G) n {u I Au E L2(G)}

where A = 2 + D2 is the Laplacian in R2. In these definitions the

differential operators are to be interpreted in the distribution-theoretic

sense (cf. (33, 34]).

The grating propagators for a grating domain G are selfadjoint

realizations in L2(G) of -A, acting on sets of functions that satisfy

the Neumann or Dirichlet boundary conditions. These operators will be

denoted by AN(G) and AD(G), respectively. Their domains are subsets of

L'(A,G) that satisfy the boundary conditions in a form appropriate to

arbitrary domains G. In particular, functions u C D(AN (G)) are required

to satisfy the generalized Neumann condition

MOL ibd
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(1.14) {(Au)v + Vu Vv} dX= 0

for all v E L'(G). In fact, if one defines

(1.15) L2 (A,G) = L'(A,G) n {u I (1.14) holds for all v E L'(G)}

N115 N N

D(AN(G)) LN(A,G) and AN(G)u = -Au then AN(G) is a selfadjoint

non-negative operator in L2 (G). This characterization was proved in

[34]. It may also be derived from T. Kato's theory of sesquilinear
/

forms in Hilbert space [17, Ch. 6]. It is known that if aG is a smooth

curve then D(AN(G)) C L2(G) and Vu has a trace in L2 (aG) which satisfies

the Neumann boundary condition [34].

To define the grating propagator AD(G) associated with the

Dirichlet boundary condition let

(1.16) LD(G) - closure of Cm(G) in L2(G)

and define

(1.7)D D
(1.17) LD(A,G) = LD(G) n L2(A,G)

D(AD(G)) = LD(A,G) and AD(G)u = -Au. Then Kato's theory of sesquilinear

forms may be used to show that AD(G) is also a selfadjoint non-negative

operator in L2 (G). Moreover, it is known that if 3G is a smooth curve

then every u E L1(G) has a trace ulaG e L2 (aG) and every u E LD(G)

satisfies ulaG - 0 [18].

The grating propagators AN(G) and AD(G) will be shown to have

pure continuous spectra. It follows that the R-B wave eigenfunctions

must be generalized eigenfunctions which are not in L2 (G). To define

them it will be convenient to define extensions of AN(G) and AD(G) which
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act in the space

(1.18) L2  (G) D V'(G) r) {u I u E L2 (K n G) for all compact K C R2 }

where D'(G) is the set of all distributions on G. The following subsets

toc
of L2. (G) are also needed:

(1.19) L G) ( u I D"-'2. L2  (G) for (%I + a< ml

(1.20) L toC(A,G) = L"loc (G) fr {u I Au E L oc(G)

These linear spaces are all Frechet spaces (locally convex topological

vector spaces which are metrizable and complete [10]) under suitable

Xc
definitions of the topologies. Thus L2  (G) is a Fr~chet space with

family of semi-norms

(1.21) PK(u) = ( u(X)I dX1

2 m, Zoc.-

Indexed by the compact sets K C R2 . Similarly, L2  (G) is a Fr~chet

space with family of semi-norms

(1.22) P(u) [f I jD a1D u(X) l2 dX/

KK' G al+at2<M

and L2  (A,G) is a Frechet space with family of semi-norms

(1.23) PK(u) - U {Iu(X)1 2 + IVu(X)1 2 + I&u(X)12  dXJ
)

The following additional notation is used below:

(1.24) )com(1.24) LZ (G) - L 2 (G) r) E'(R2 )
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Lcom()or(1.25) L2 (G) L(G) r) L2 °m(G)

where E'(R ) denotes the set of all distributions on R2 with compact

supports.

The local grating propagator AN,oc(G) for G and the Neumann

boundary condition is the extension of AN(G) in L2  (G) defined by

D(AN'£c(G)) - LNP£°C(A,G)

(1.26)
I loc!, corn

E L2'° (A,G) n {u I (1.14) holds for all v e L 2  (G)}

and

(1.27) AN'toc(G)u .-Au for all u r D(AN'£ c(G))

Similarly, the local grating propagator AD,92cc (G) for G and the Dirichlet

boundary condition is the extension of AP(G) in L2  (G) defined by

cc D, oc ( DGc loc
(1.28) D(AD' (G)) L L2 (A,G) L c(G) n ,Loc22 n 2

where

D ~~ ,£c oc

(1.29) LD2£°c(G) Closure of C,(G) in L2  (G)

and

(1.30) AD i°c(G)u - -Au for all u e D(A c(G)).

The spectral analysis and eigenfunction expansions for AN(G) and

AD(G) are nearly identical. To emphasize this, and to simplify the

notation, the symbol A will be used to denote either AN(G) or AD(G) in

stating results that are valid for both. Similarly, the symbol A£ °c

will denote A N'Zc(G) or A D'°c(G) except where a distinction is necessary.

.... .....
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N D
The spectral theory of A (G) and A (G) will be developed by

perturbation theory, beginning with the degenerate grating R2. The

grating propagators for this case will be denoted by

(1.31 N D D 2
A1.A1) AO)0 A0  A (R 0)

and

(1.32) N.Zoc N,Zoc (Ri),A0  - A (R2)

D a for NA oc D,.oc
and the condensed notation A0 for A or AD and AO or

will be used.

The spectral analysis of A0 can be carried out by separation of

variables and is essentially elementary. Thus D 2 is essentially self-

adJoint in L2(R) with complete family of generalized eigenfunctions

2
{(21r)- /2 exp (ipx) p Pe R}. Similarly, D2 and the Neumann boundary

condition define a selfadjoint operator in L2 (0,-) with complete family

(2/7)1/2 cos q y I q > 0}, while D2 and the Dirichlet boundary condition

define a second selfadjoint operator in L2 (0,-o) with complete family

{(2/7)1 /2 sin q y q > 0}. It follows that the products

(1.33) iN(X,p,q) eip 'x cos q y , (p,q) r R2

(1.34) D(X)) i eipx sin q y , (p,q) E R2

-.. koc. DAoc,
are in DCA 0  ) and D(AO respectively, and define complete

N Dfamilies of generalized eigenfunctions for AN and AD. More precisely,

N Dif is used to denote either 0N or 0D then the classical Plancherel

theory can be used to derive an eigenfunction expansion and spectral

decomposition for

I
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(1.35) A0  f 0 dO (P)
0

which may be formulated as follows. First, for all f E L2 (R2) the limit

(1.36) fo(p,q) " L2(R )-lim J o(X,p,q) f(X) dX
M-- 0  -M

exists and

(1.37) f(X) L2 (R)-lim O(X,p,q) o (p,q,) dpdq
M- o -M

and

(1.38) If1 2( - If I2 •

L2(R2) OL (R2)

Moreover, the spectral family of Ao is given by

(1.39) II0(p) f(X) J iPo(X,p,q) fo(p,q) dpdq

{(p,q) p2 +q 2 <u,q>O}

Finally, if the linear operator 00 : L2 (RO) - L2 (RO) is defined by

00f " f0 then (P is unitary.

The principal result of this report is a generalization of this

eigenfunction expansion and spectral analysis that is valid for the

operator AD(G) in arbitrary grating domains G and for the operator A N(G)

in grating domains G e S. In these generalizations the R-B waves play

the role of the eigenfunctions P0"

.9



§2. Rayleigh-Bloch Waves.

It will be assumed in the remainder of the report that the unit

of length has been chosen to make the grating period a - 2w. This

normalization, which simplifies many of the equations, does not limit

the generality of the theory because the general case can be recovered by

a simple change of units.

The definition of the R-B waves can be motivated by considering

the reflection by a grating of a plane wave

(2.1) inc(X,pq) = (27r) -' exp {i(px - qy)}, (p,q) e R 2

Note that the effect of translating inc by the grating period 2w is to

multiply it by a factor of modulus 1:

(2.2) inc (x + 21,y,p,q) - exp {27rip} inc (x,y,p,q)

Since G is invariant under this translation the reflected wave, if it is

uniquely determined by inc , must also have property (2.2). This suggests

the

Definition. A function p E L Loc (A,G) is said to be an R-B wave
2

for G if and only if there exist numbers p e R and w > 0 such that

(2.3) ip(x + 2w,y) - exp {2wip} 4(x,y) in G

(2.4) Ap + W 2  - 0 in G, and

(2.5) i(X) is bounded in G.

If, in addition,

15
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(2.6) WeD(AE'c)

.then is said to be an R-B wave for A.

The parameters w and p will be called the frequency and x-momentum

of the R-B wave, respectively. Note that p is only determined modulo 1 by

(2.6). The x-momentum that satisfies

(2.7) -1/2 < p < 1/2

will be called the reduced x-momentum of P. Property (2.3) is sometimes

called quasi-periodicity or p-periodicity. It is equivalent to the

property that

(2.8) (x,y) - exp {ipx} O(x,y) for all (x,y) E G

where

(2.9) O(x + 27,y) - 4(x,y) for all (x,y) E G

Solutions of the Helmholtz equation (2.4) are known to be

analytic functions. In particular, each R-B wave for A satisfies

E CO*(G). Hence, the function in (2.8) is in C (%) and has period

27 in x. In follows from classical convergence theory for Fourier series

that * has an expansion

(2.10) *(x,y) - * ,P(y) exp {i(p'+ Z)x}, (xy) R ,
lezh

where Z denotes the set of all integers. The series converges absolutely

and uniformly on compact subsets of 2. Moreover, the partial derivatives

of * have expansions of the same form which may be calculated from (2.10)

by term-by-term differentiation and which have the same convergence
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properties. It follows that the coefficients 0,(y) in (2.10) must

satisfy

(2.11) ij(y) + (w2 _ (p + £)2) i(y) - 0 for y > h

Hence the terms in the expansion (2.10) have the following forms,

depending on the relative magnitudes of w and jp + L.

w > Ip + L. In this case there exist constants c+ and c such

that

(2.12) 0,L(y)exp {i(p+ LE)xl c +exp {i(px+ qy) }+ c- exp {i(px- qy)l

where

(2.13) PL = p + L, qE = (w2 - (p + ,)2)1/2 > 0

the two terms in (2.12) describe plane waves propagating in the directions

(pX,±q). Since p2 + q2 w W2 these vectors lie on the circle of radius w

with center at the origin and their x-components differ by integers.

Clearly there are only finitely many such terms.

i.< Ip + ZI. In this case ,(y) is a linear combination of real

exponentials in y and the boundedness condition (2.5) implies that

(2.14) 4i£(y) exp {i(p+L)x} - c exp {-((p+L)2-w2)1/2 yexp {ip+L)x}

where ((p + Z)2 _ W2 )1/2 > 0. In the application to diffraction gratings

terms of this type will be interpreted as surface waves.

w -P + XI. In this limiting case tP(y) is a linear combination

of 1 and y and (2.5) implies that

(2.15) yy(y) exp (i(p + £)x} - cL exp {i(p + X)x.
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Physically, (2.15) describes a plane wave that propagates parallel to

the grating; i.e., a grazing wave. These waves divide the plane waves

(2.12) from the surface waves (2.14). The frequencies {w- Jp+. 2 LEZ1

are called the cut-off frequencies for R-B waves with x-momentum p.

An R-B wave ip for G (for A) which satisfies the additional

conditions

(2.16) ck - 0 (resp. c - 0) for all Z such that w > Ip + 1I

will be said to be an outgoing (resp., incoming) R-B wave for G (for A).

If

(2.17) c2 Z c x = 0 for all Z such that w > Ip + .1

then 4) will be said to be an R-B surface wave for G (for A). Of course

an R-B surface wave for A is both an outgoing and an incoming R-B wave

for A. It is interesting that these are the only outgoing or incoming

R-B waves for A. This is a consequence of

Theorem 2.1. Every outgoing (resp., incoming) R-B wave for A is

an R-B surface wave for A.

A proof of this result has been given by Alber [3] in the case

where DG is a curve of class C2. The method is to apply Green's theorem

to the R-B wave * for A and its conjugate in the region

G () {X I -w < x < n, y < R}. In the case of an outgoing R-B wave for A

this yields the equation

(2.18) X (W2 _ (p + X)2)1/2 Ic12 W 0
I lp+z.

which implies that c+ = 0 when w > lP + Z1. For general grating domains
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the application of Green's theorem must be based on the generalized

boundary conditions, as in [34, p. 57].

It will be seen in §4 that diffraction gratings may indeed

support R-B surface waves and the question arises whether geometric

criteria for the non-existence of such waves can be found. In the case

of the Dirichlet boundary condition such a criterion was found by Alber

[3] by adapting a method of F. Rellich (24] and D. M. Eidus (12]. Spe-

cialized to the grating domains considered here, Alber's theorem implies

Theorem 2.2. Let

(2.19) G - [X y > h(x) for all x E R}

where h E C2(R) and h(x + 27T) = h(x) for all x E R. Then AD(G) has no

R-B surface waves.

Theorem 2.1 implies that R-B waves for A may be determined,

modulo R-B surface waves, by specifying either the coefficients c. with

w > lP + X1 (the incoming plane waves) or the coefficients c+ with

w > + ZI (the outgoing plane waves). R-B waves for A that contain a

single incoming or outgoing plane wave will be used in the R-B wave

expansions given in §6 below. These are the grating waves originally

introduced by Rayleigh. Physicaly, they are the wave fields produced

when the grating is illuminated by a single plane wave. Here they will

be called R-B diffracted plane wave eigenfunctions for A or, for brevity,

R-B wave eigenfunctions for A. There are two families determined by the

presence of a single incoming and outgoing plane wave, respectively.Iinc incThe plane waves in(X,p,q) and in(X,p,-q) defined by (2.1) are

incoming and outgoing R-B waves, respectively, with x-momentum p and

frequency
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(2.20) W . W(p,q) . (p2 + q2)1/2

The scattering of these waves by a grating will produce outgoing

(resp., incoming) R-B waves with the same x-momentum and frequency.

Hence the R-B wave eigenfunctions may be defined as follows.

Definition. The outgoing R-B diffracted plane wave for A with

momentum (p,q) E R0 is a function +(X,p,q) such that

(2.21) *+(o,p,q) is an R-B wave for A, and

(2.22) *+(X,pq) pinc(X,pq) + sc(X,p,q)

Sc

where + is an outgoing R-B wave for G. Similarly, the incoming R-B

diffracted plane wave for A with momentum (p,q) E R2 is a function

i (X,p,q) such that

(2.23) *_(*,p,q) is an R-B wave for A, and

inc(2.24) (_(X,p,q) = (X,p,-q) + psc(x,p,q)

where sc is an incoming R-B wave for G.

The uniqueness of +(X,p,q) modulo R-B surface waves follows

from Theorem 2.1, as was remarked above. Their existence for the class

of gratings defined in §1 is proved in §6. Note also that the defining

properties imply that

(2.25) _(X,p,q) - +(X,-p,q)

Hence the existence of the family *_ follows from that of h+.

In the half-plane % above the grating the R-B waves h_+ have

Fourier expansions (2.10). For the function the expansion has the form
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+(x,y,p,q) (2w) exp {i(px- qy)}

(2.26) + ~ c(p,q) exp {i(pjx + qy)}

(p+p) 2 .<p2+q2

+ ~ c£(p,q) exp {ip2,x} exp {-((p+Z) 2 p 2 q2)1/2 y}

(p+9) 2 >p2+q2

where

(2.27) (ptqk) = (p + £,{p 2 + q2 _ (p + 9)2}/2 ) e2

defines the momentum of the reflected plane wave of order 1. Similarly,

i_(x,y,p,q) = (21) -I exp {i(px + qy)}

(2.28) + X c-(p,q) exp {i(p~x - q2y)}

(p+Z) 2<p2+q2

+ [ c_(p,q) exp {ip~x} exp {_((p+Z) 2  p2 -_q2)1/2 y}

(p+Z) 2 >p 2+q 2

The relation (2.25) implies that the coefficients c (p,q) in (2.26),

(2.28) satisfy

(2.29) c-(p,q) - c+£(-p,q) for all (p,q) E R2 and Z E Z

The surface wave terms in (2.26) and (2.28) are exponentially

decreasing functions of y except when the wave frequency

w(p,q) - (p2 + q2)1/2 l p + ZI for some X e Z. These are precisely

the cut-off frequencies mentioned above. In momentum space they form

the exceptional set
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(2.30) E R2 nU {(p,q) /pT= p + 9,
2.Z

E is a set of confocal parabolas with foci at (0,0), axes along the

p-axis and directrices p + Z - 0, k E Z. Two members of the family with

directrices p + 2 = 0, p + m = 0 are disjoint if Z and m have the same

sign and intersect orthogonally if 2 and m have opposite signs. The

family E thus divides R2 into a system of curvilinear rectangles.
0

In the special case of the degenerate grating RO comparison of

(1.33), (1.34) with (2.26), (2.28) shows that for the Neumann case

N =+ cl(p,q) = (27) and all other c0(p,q) - 0. Similarly,

for the Dirichlet case #= ip+ = -i, c+(p,q) = -(2T) - i and all others

c (p,q) = 0. Thus in these cases there is no scattering into higher

order grating modes or surface waves, as was to be expected. Note that

the defining properties (2.22), (2.24) can be rewritten as

(2.31) 4±(X,p,q) = t 0(X,p,q) + p'(X,p,q)

where 0 is defined as at the end of §1 and and 4i are, respectively,

outgoing and incoming R-B waves for G. This decomposition exhibits the

R-B wave eigenfunctions for G as perturbations of those for R . The

decomposition is used below for the construction of i± and the derivation

of the eigenfunction expansions.



§3. The Reduced Grating Propagator An.

The quasi-periodicity property (2.3) of the R-B waves implies

that they are completely determined by their values in the domain

(3.1) = G n {X I -T < x < 7}

Moreover, (2.3) and the equation obtained from it by x-differentiation

define boundary conditions that must be satisfied by R-B waves on the

portions of DO where x = ±11. These observations are used below to show

that the R-B surface waves and diffracted plane waves for G are eigen-

functions and generalized eigenfunctions, respectively, of a p-dependent

selfadjoint realization of -A in L2 (2). This operator, which will be

denoted by A and called the reduced grating propagator, provides ap

basis for the construction of the R-B waves for G.

The definition of the grating domains in §1 implies that the

reduced grating domains 0 satisfy

(3.2) Bh C Q C B0 for some h > 0

where

(3.3) Bc R2 n {X -7r < x < 7) = {X I -7r < x < it, y > c)

The notation

(3.4) y {y I (w,y) E G} = (y I (-7,y) E G}

will also be used. The definition of the reduced grating propagators

AL(Q) and AD(2) associated with n and the two boundary conditions will
p p

be based on the function space

23
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(3.5) L2  = {u j u(r,y) = exp {2ip} u(-7r,y) y E y}

Sobolev's imbedding theorem [1] implies that every u E L'(O) has boundary

Loc ivalues u(±T,y) in L 2 (y) and L2 'P(Q) is a closed subspace of L'(O).

The operator AN(S) is defined by
p

D(AN()) f= L1'P(Q) n L2(A,Q )

(3.6)

n {u I {(Au)v+Vu. V-} dX = 0 for v E L P(O)}
fQ 2

and AN(Q)u - -Au. It can be shown that AN(Q) is the selfadjoint non-
p p

negative operator in L2(S) associated via Kato's theory with the sesqui-

linear form defined by the Dirichlet integral acting on the domain

L 2 P(Q). By applying elliptic regularity theory [1] and Sobolev's

imbedding theorem it can also be shown that every u E D(AN()) satisfies
p

the p-periodic boundary conditions

u(r,y) = exp {2wip} u(-r,y), y E y

(3.7) <

Dlu(7T,y) - exp {27Tip} Dlu(-n,y), y E Y

Moreover, if aG is a smooth curve then it follows from (1.14) as in §1

that functions u E D(AN(il)) satisfy the Neumann boundary condition on
p

(3.8) r - 3G n

where 2 is the closure of S in R2 .

To define AD( ) several additional function spaces are needed.
p

The subset of CO°(G) consisting of functions that satisfy

(3.9) O(x + 2,y) - exp {27ip} O(x,y) for all (x,y) E G
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(3.10) supp p C G r {X y y < p} where p = p(4), and

(3.11) dist (supp 0,3G) > 0

will be denoted by Cp(G):
p

(3.12) Cp(G) = C'(G) n {4 j (3.9), (3.10) and (3.11) hold}
p

The restrictions of such functions to 0 defines

(3.13) Cp(*) = {E = e C (G)}
p p

Finally,

(3.14) LD'P(2) = Closure in L'(Q) of Cp(S)

ppThe operator AD( ) is defined by

D(AD ())
p

(3.15)

D l LSn n f{uI J (Au)v+Vu" Vv}dX-0 for vEL'P(w)}

and AD(Q)u = -Au. In this case it can be shown that AD(2) is the self-
p p

adjoint non-negative operator associated via Kato's theory with the

sesquilinear form defined by the Dirichlet integral acting on the domain

LD'p(q). Again, functions in D(AD(Q)) satisfy the p-periodic boundary

conditions (3.7). Moreover, if 3G is a smooth curve then functions

u E D(AD(P4)) satisfy the Dirichlet boundary condition on r.

The operators AN(Q) and AN(S) will be shown in §4 to have
p p

continuous spectra. To define corresponding generalized eigenfunctions

it will be convenient to define extensions of AN(SI) and AD(Q) in L°oc(Q).
p 2

The following subsets of L2  (Q) are also needed:

2l
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(3.16) Ll -p tc(2) L2 n {uI u( ,y) exp {21Tip} u(-7r,y), yEy}

(3.17) L Dqpioc (0) = Closure of Ce(g) in L2 •Loc6 )

Each is a closed subspace of the Frechet space L 2£c(Q). The sets

L 1 L-)CM om~a

L2'Pcom(S) = L2' ( )  rn

(3.18) <

L2,~cr (QZ) - L"'P(Q) n corna

will also be used.

The operator AN'£°c(1) is the extension of AN(M) in L2°c(Q)P p

defined by

D (A ()) L2 LPZc(Q2 ) r)L2

(3.19)

n {u {(Au)v+ Vu' VV dX 0 for vEL'Pc m(Q)}

and AN Muc( )u -Au. Similarly, AD' °c(Q) is the extension of AD() in

2.oc
L°2 (Q) defined by

D(AD 'goc()) = L Dp(oc(,) n L2 'ioc(A,Q)p22

(3.20)

n {u {(Au)v+Vu. Vv} dX=O for v E LDp'com(n)}

and AD'£oc(2)u - -Au. It is easy to verify that D(AN,oc()) and
p p

D(ADZoc( )) are closed linear subspaces of the Frechet space L1t'oc(A'Q)
p 2

and hence are themselves Frichet spaces.

The reduced grating propagators for the degenerate grating will

be denoted by
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(3.21) AN AN(BO), Aop W A(B0), and0 p O A0  (B)

(3.22) A 9 ° c 
- A N,°c(B0)q A

D Zoc . A D'°C(B0)0,p p o,p p

Moreover, the condensed notation of §1 will be used; i.e., A will beP

used to denote either A(2) or AD(2) in stating results valid for both.
p p

Similarly, A 9.0c will be used to denote A N,'ioc(2) or AD'9oc( (). In
p p p

particular, for the degenerate grating the notation A is used for0 ,p
ANO DAoNZoc AD,Zoc

A N and AD and A Op is used for AN, oCand A 09 O0,p ado,p 0,p alp o,p

Note that all the p-dependent function spaces defined above are

periodic functions of p with period 1. It follows that

(3.23) Ap.m = Ap, ApkOC = A for all m E Z

Hence it will suffice to study A and A l c for the reduced momenta
p p

p e (-1/2,1/2].

The resolvent set and spectrum of Ap will be denoted by p(A )

and a(A p) respectively. Clearly (A p ) C [0,-) since Ap is selfadjoint

and non-negative. In fact, it will be shown that

(3.24) a(Ap) - [p2,-) for all p E (-1/2,1/2]

This was proved directly by Alber in the cases considered by him [3].

Here it follows from the eigenfunction expansions for Ap given in §5.

(A p ) is a continuous spectrum which, in general, will have embedded

eigenvalues. It will be shown in §4 that a0 (Ap), the point spectrum of

Ap, is discrete; that is, each interval contains finitely many eigen-

values of Ap and the eigenvalues have finite multiplicity. It is of

interest for the applications to diffraction gratings to have criteria

, ~~~~~~~~~........ . -. i . ... ...... :_
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for a0 (A ) to be empty. While completely general criteria are not known

it will be shown that the hypotheses of Theorem 2.2 imply 0 (AP)p

for all p E (-1/2,1/21.

Eigenfunction expansions for Ap are derived in §5 by perturbation

theory starting from A 01. The expansions for A0 ,p which are

elementary, are recorded here as a starting point for the analysis of Ap

N
Separation of variables applied to ANOp leads to the complete family of

generalized eigenfunctions

N 1 ei(p+m) "x

(3.25) 0N(X,p+m,q) - e cos qy, m E Z, q > C

where p C (-1/2,1/2] is fixed. Similarly, for AD one finds the complete
0Opp

family

D = 1 i(p+m)'x
(3.26) 40 (X,p+m,q) - e sin qy, m E Z, q > 0

1T

To describe the eigenfunction expansions for A the condensed notationO0,p

N D
,0 (X,p+m,q) will be used to denote either 00 or P. Note that

(3.27) 0 (X,p,+m,q) = o (X,p+m,q)lo ,

that is, the generalized eigenfunctions for A0 ,p are obtained from those

of A0 by restricting X to B0 and the x-momentum parameter to the lines

p' - p + m with m e Z and p e (-1/2,1/2] fixed. Classical Plancherel

theory implies that if R0 - (0,oo) then for all f E L2 (B0 ) the limits

(3.28) f0 (p+m,q) - L2 (R0)-lim f *0 (X,p+m,q) f(X) dX

M"- B0,
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exist for m E Z and p E (-1/2,1/2] fixed, where B 0 n (X Y < M).

Note that the L2(R0)-convergence refers to the variable q. Moreover,

Parseval's formula holds in the form

I 2 o.+ ,. 1
(3.29) IIL (B ) L

2 0 uez 20RO

Hence, the sequence

(3.30) {f0(p+m,
") E L2 (R0 ) m E ZI E 9 L2 (Ro)

MEZ

and the operator Op: L2(Bo) e- L 2 (R.), defined by
nEZ

(3.31) 0 pf - {o(P0 ,) I m E Z}

is an isometry. A more careful application of the Plancherel theory

shows that 0 " is unitary. Finally, calculation of the spectral family
0 ,p
> I P _ p2} for A gives

3.32- )(p) 2) 1/2

(3.32) f00 () f(X) V f 0 (X,pm,q) f0 (p+m,q) dq(P+m) -_< 0

In particular, making P - gives the eigenfunction expansion

(3.33) f(X) - L2 (Bo)-lim M ,0 (X,p+m,q) o (p+m,q) dqM - lmf _ l o

The relationship between the R-B waves for A and the reduced

propagators Ap will now be discussed. Note first that if 4, is an R-B

surface wave for A with x-momentum p + m (-1/2 < p < 1/2, me Z) and

w {lp + 1 1 Z6 Z} then 4 C D(Atoc) and for y > h

I
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(3.34) 4(x,y) = c.exp {i(p+L)x}exp {-((p+ )2- 2)1/2 y}

It follows that (x,y) - 4(x,y)I e D(A p) and Apo _ W20. Thus 0 is an

eigenfunction of A . To formulate the converse, note that everyp
_ oo

* oc(LI) has a unique p-periodic extension * E L2 C(G). It is easy

to verify that if

(3.35) Q(m) - f + (2rmn,0)

then for each m E Z the extension 4 is given by

(3.36) 4(x,y) = exp {2rimp} O(x-2nm,y) for all (x,y) C m

_ oc (m)This defines in L2  (G) because G differs from mez by a

£o . oc

Lebesgue null set. The operator OP: L oc(0) - L2  (G) defined by

(3.36) maps L?c(0) one-to-one onto the set of all p-periodic functions

toc
in L2  (G). With this notation it is not difficult to show that if 0 is

an eigenfunction of A then O 0P is an R-B surface wave for A with
P

reduced x-momentum p.

The relationship between R-B diffracted plane waves for A and

generalized eigenfunctions of A is exemplified by (3.27). More
p

generally, if 4(X,p+m,q) is an R-B diffracted plane wave for A with

-1/2 < p < 1/2, m E Z then 0_(X,p4m,q) = 4±(X,p+m,q)j, satisfies

0+(.,p+m,q) E D(A'°C), (a + W2 (p+m,q)) *_(X,p+m,q) - 0 in 11 and
p

(3.37) 0±(X,p+m,q) - 0 (X,p+m,q) + 0'(X,p+m,q), y > h,

where (resp., 0') has a Fourier expansion that contains only outgoing

(reap., incoming) plane waves and exponentially damped waves. Functions
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0+(X,p+m,q) and 0_(X,p+m,q) with these properties will be called,

respectively, outgoing and incoming diffracted plane waves for A .P

They are unique modulo eigenfunctions of A . It is now easy to verifyP

that if 0+(X~p+mq) (resp., 0_(X,p+m,q)) is an outgoing (resp., incoming)
diffracted plane wave for Ap then =+(X,p+m,q) - CP 0+(X,p+m,q) (resp.,

*_(X,p+m,q) - Op 0_(X,p+m,q)) is an outgoing (resp., incoming) R-B

diffracted plane wave for A with x-momentum p + m. These relationships

will be used in §6 to construct the R-B diffracted plane waves for A.



§4. Analytic Continuation of the Resolvent of A
p

An analytic continuation of the resolvent

(4.1) R(A ,z) (A - z)-
p p

across the spectrum a(Ap) - [pZae) is constructed in this section by an

elegant and powerful method that was introduced into scattering theory

by H. D. Alber [3]. The continuation provides the basis for the con-

struction in §5 of the diffracted plane waves 0+(X,p,q) for A and the

derivation of the corresponding eigenfunction expansions.

For each pair of extended real numbers r,r' satisfying 0 < r

< r' < +- let

Br , ={X I -1T< x< r, r <y <r'1 , Br -Br
r,r ( , yr Brco

(4.2)

92 ,- B S1~ Q
r,r' r,r' r =  r,00

Moreover, let Pr : L 2 (0) * L2
(G) denote the linear operator defined by

u(X) , X E~ Q ,r
(4.3) Pr u(X) = <

0 , XE Qr

The goal of §4 may be formulated with this notation. It is to construct

an analytic continuation of

(4.4) z * R(A ,Z) P : L(, 2 (a)
p r 2'"o,r' -~2

from the resolvent set p(A ) C - [p2 , -) across a(Ap) p [p2,co). For

this purpose p(A ) will be embedded in a Riemann surface Mp,

33
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The definition of M may be motivated by considering the linearp

space of functions t_

(4.5) Epz r " D(ApO) p {u I supp (A + z)u C 60,r , r > h

Basic properties of E are described by
p,z,r

Lemma 4.1. Every u E E satisfiesp ,z,r

(4.6) u 6 L 2 Zocc 6h)

(4.7) u(x,y) I [ ur(y) ei(p+m)x inm "h
n2Zkoc

where the series converges in L ' (6),

(4.8) urn(Y) E LZ'L°c(Rh) , Rh (h,-)

Moreover, if 62 denotes the closure of 62 in R?,

(4.9) U 6 C(0(2) , and

(4.10) u(y), c exp{iy(Z- (p+M)2)1/2} + C- exp {-iy(z- (p+m)7)1121m m m

for y > h where c are constants and
m

(4.11) Im (z - (p + m) )I2 > 0

Properties (4.6) and (4.9) follow from elliptic regularity theory

(], while (4.7) and (4.8) follow from classical Fourier theory. The

convergence of (4.7) in L2,Ioc() follows from the fact that the partial2 for

sums of the Fourier series define orthogonal projections in L2 (r ,) for

h < r < r' < . (4.10) follows from (4.9) and the equation Au + zu - 0

in6'

II
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Note that if z E p(A ) and u = R(A ,Z)P rf with f E L2('0, r  then

uE L2(S) n Ep,z,r and hence cm  0 for all m and cm 0 when

Im (z - (p + m)2)112 - 0. This suggests that M be defined as the
p

Riemann surface associated with the family of holomorphic functions on

C - [pz, ) defined by

(4.12) {z _ (z- (p+m)2)/2 I Im (z- (p+m)2)1/2 > 0 for all m e Z}

M is uniquely determined up to isomorphism by the following threeP

properties (3, 21]:

(4.13) M is connected and every function of the family (4.12) canP

be continued analytically to all of M .P

(4.14) For every pair of points of M that lie over the same pointP

of C there are at least two functions of the family that take

different values at these points.

(4.15) M is maximal with respect to these two properties.P

The following notation will be used in connection with M .
p

will denote a generic point of Mp and IT = n : Mp - C will denote the

canonical projection of M onto C. The subscript p will be omitted when

there is no danger of ambiguity. The analytic continuation of

(z - (p + m)2) I/Z from C - [p2 ,-) to Mp will be denoted by wP+m(W.

Thus, for all M p

(4.16) w ( ) = ±(Tr( ) - (p + M)2) 1 2

M+ will denote that component of M over C - (p2,-) on which
p p

poo
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Im W (C) > 0 for all m E Z. Finally, Tp P {(p + M) 2 I E e Z} C C will

denote the set of branch points of the family (4.12).

The properties of M include the following. M has infinitelyp P

many sheets. More precisely, for each disk D(z0 ,p) C C, - 1(D(z 0 ,p))

has infinitely many components. If z0 = (p + m)2 for some m E Z then the

set 7-I (D(z0,p)) contains infinitely many branch points. Moreover, for

all E M the set {m I Im Wp~( ) < 0} is finite [3]. Finally,

M - M for all m G Z.p+rn p

In addition to M the setP

(4.17) M U {(PE) I E Mp}
-i/2<p<l/ 2

will be needed to describe the dependence of the continuation of

R(A p,(0))Pr on p and . M will be topologized in such a way that each

function (p) - Wp$ (), m E Z, is continuous on M. To this end let

(p0 , o) E M and define

(4.18) zo = '7rpo () , D(zop) = {z I Iz - zol < P}

and

(4.19) U(p0 ,Co,p) - Component of r-I(D(zo,p))PO

containing %0 (C M p)

To define a neighborhood basis for M at (p0,40) three cases will be

distinguished.

Case 1. z0 i [pz,co). If po > 0 is the distance from z. to

[p ,oa) then for p < p0 D(z0,p) n [P0,oo) - p and U(p0 , 0 ,p) contains no

branch points of M p. In this case
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(4.20) {sgn Im ( ) m E z) , ; E U(po,Co,p)
po+1

is well defined. Moreover, IP - pol < 6 implies that D(z0,p) n [p
2 ,_)

= for 6 small enough and hence {sgn Im wp( ) I m E Z} is also well

defined on the components of - (D(z,,p)). In this case one may define-p

U(p, 0 ,P) as the component of -I(D(z,,p)) for whichp

(4.21) {sgn Im w (itI (z)) I m E Z} = {sgn Im w (T- (z)) I m E Z}
p+m p Pom PO

for z E D(zo,p). A corresponding neighborhood of (p0 ,r0) in M is

defined by

(4.22) N(p0,OP;OP6) = [ (P, I) R EU(P,0 )

Ip-po1<6

Case 2. z E [p ,a) - T . In this case if p0 is the distanceP
0

from z0 to the set T then for p < p0 U(p0 ,;0 ,p) contains no branchP0

points of M and (4.20) is well defined provided TP (;) E D+(z0,P)p0  P0

D(z0 ,p) r, {z I Im z > 0}. Moreover, IP - Po] < 6 implies that D(z0 ,p)

contains no points of T, for 6 small enough, and hence

{sgn Im wp+m() I m C Z} is also well defined if p( ) E D+(z0,p). In

this case one defines U(p,;0 ,p) as the component of PI(D(z0,p)) for

which (4.21) holds for z E D+(zo,p)). A corresponding neighborhood is

again defined by (4.22).

Case 3. z. - (p0 + m 0)
2 for some m0 E Z. If po > 0 is the

distance from zo to the set TPO - ((po + mo) 2} then for p < po the set

U(Po,4 0 ) contains only one branch point; namely, that for w ().

Hence {sgn Im wp+() m E Z - (mo}} is well defined for

S6 U(po,; 0,p) and 1T (o) 6 D+(z0 ,p). Moreover, Ip - pol < 6 implies
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that D(z0,p) contains (p + m 0)
2 and no other points of the set Tp and

hence {sgn Im w p+m() m E Z - {m0}} is well defined on the components

of 1T 1 (D+(z 0 ,p)). In this case one may define U(p, 0 ,p) as the

component of IT1(D(z0 ,p)) for which
P

fsgn Im wpm7 (w 1 (z)) Im C- Z - {m0}}

(4.23)

={sgn Im w p+m (Tr- I(z)) I mEz- {m 0 }}

for all z C D+(zo,p). A corresponding neighborhood is again defined by

(4.22).

The topology of M is defined to be the one generated by the

neighborhood bases defined above and one has

Theorem 4.2. Each of the functions on M defined by

(4.24) (p,;) - wp+m(W) , m e Z

is continuous on M. Moreover, the family of functions

{(P,;) - wp+m(C) I m E Z} is equicontinuous in M.

The theorem that w Wp+m() I m E Z} is equicontinuous on Mp

for fixed p was proved by Alber (3]. Theorem 4.2 plays a key role in

proving the continuity in (p,q) of the Rayleigh-Bloch waves in §6.

The Fr~chet Space Fp,Cr . To describe the subset of Epz,r that

contains the analytic continuation of R(A ,Z)P rf to Mp, consider the set

of functions u E whose Fourier representations (4.7), (4.10) inp,z,r

Qr satisfy

(4.25) For each m e Z, either c+ - 0 or-c- - 0, and
in

(4.26) c- 0 for all but a finite number of m e Zm
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Note that these conditions express the "radiation conditions"

(4.27) [Dy ± i(z - (p + m)2) /2 ] ur(y) - 0 , y > r

where for each m either "+" or "-" is chosen and "-" is chosen for all

but a finite number of m E Z. It is clear that each such u E E is
p,z,r

associated with a unique point ; E Mp such that 7p( ) = z and the Fourier

expansion (4.7), (4.10) of u has the form

14.28) u(x,y) = I c m exp {i(p+m)x + iywp.m( )} , y > r
mEZ

For each (p,) E M and each r > h the set of all such solutions will be

denoted by

-£oc-

(4.29) F = D(A ) n {uI supp (A+r ())u C Q and (4.28) holds}p,,r p o,r

2koc 1 
2 oc 2 .oc

Note that F C D(A C L' (A,Q) and recall that D(A ) is
p r p 2 p

closed in L2 '°C (A,Q). This implies
2o

Theorem 4.3. F is closed in D(A °c) in the topology ofp, ,r p

L2 A,(,) and hence is a Fr~chet space.

This is immediate because the defining properties of Fp,1,r'

namely supp (A + tp ())u C n0,r and [Dy - i W P+m() um - 0 in y > r,

are preserved under convergence in L2'i°c(AI).

The following condensed notation will be used in discussing

Fp,;,r and related operators:

(4.30) (u,v)r , = (uv)L (r,r,)
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(4.31) (uv);r,r' = (uv)L (rr)
1;r~r2 rXr

(4.32) (uv)l ;;r,r' = (u'v)L1(A,
L2 'r,r'

Now let Pp.,,r Fp,,r L2( 0 r
) denote the natural projection defined by

(4.33) P u = u1 for all u E F

An important property of F is expressed by the following generali-

zation of a theorem of Alber [3, p. 264].

Theorem 4.4. For every compact set K C M and for every r' > r

there exists a constant C = C(K,r,r') such that

(4.34) lug I;A;o,r' C lPp,C, r ut;A;0, r

for all u E U(p, )EK Fpr . In particular, P is a topological

isomorphism of Fp, ,r onto Pp, ,r Fp, ,r ' topologized by the
pLt(A,0,r )-norm.

The Operators A L (0,) L( L (S,). Following Alber's
p, 4,r 2 o,r 2 O,r

program, the construction of the analytic continuation of R(A ,Z)Pr to

Mp will be based on the family of linear operators Ap,C, r in L2 (S0,),

defined for all (p, ) 6 M by

(4.35) D(A p,,) Pp,;,r Fp, ,r

(4.36) A u m -Au

The properties of Ap, ,r that are fundamental for the analytic continu-

ation of R(A pz) are described by the following theorems.
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Theorem 4.5. For every (p) E M and every r > h the operator

Ap,;,r is m-sectorial in the sense of Kato (17, p. 279].

Theorem 4.6. For all grating domains of the class defined in §1,

the family of operators {A (p, ) E M} is continuous in the sense

of generalized convergence (Kato (17, p. 206]). Moreover, for each

fixed p G (-1/2,1/2] the family {Ap r  E M p} is holomorphic in the

generalized sense (Kato [17, p. 366]).

Theorem 4.7. For every (p,C) E M, every r > h and every

z E P(Ap ) the resolvent R(A ,z) (A - z) is a compact

operator in L2 (O0 ,r ) and hence OC(A p,,r) is discrete.

Theorem 4.5 generalizes Alber (3, Th. 5.5]. As in [3] it may be

proved by associating Apr with a densely defined, closed, sectorial

sesquilinear form in L2 (Q0 ,r ) and using Kato's first representation

theorem [17, p. 322]. The second statement of Theorem 4.6 generalizes

Alber [3, Th. 5.5b]. The hypothesis G e S of §1 is needed to prove

Theorem 4.6. Theorem 4.7, which generalizes Alber (3, Th. 5.5a], is a

consequence of the local compactness property of G in the case of the

Neumann boundary conditions. Complete proofs of Theorems 4.5, 4.6 and

4.7 are given in (38]. The following consequences of these theorems are

needed for the spectral analyses of A and A in §§5-6.p

Theorem 4.8. For all E M+ one has 1p(T ) E P(Ap ) and
p p ,r

(4.37) R(Ap,.,r'7 p()) Pp, ,r R(A pr p()) Pr

This result may be verified by direct calculation.

Theorem 4.9. For every p E (-1/2,1/2] the set

(4.38) ~p I Tp ( a (Ap~ C

p ,
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has no accumulation points in M and is independent of r > h.P

This result, which generalizes [3, Th. 5.5c], is a consequence

of Theorem 4.7. For brevity the resolvent of (4.37) will be denoted by

(4.39) Rp, ,r - R(A p,,rip (C)) E B(L2 ( ,)).

Here B(X) denotes the bounded operators on X.

Corollary 4.10. For each p E (-1/2,1/2] and r > h the mapping

(4.40) - Rp, r B(L 2 (Q0,r

is finitely meromorphic on Mp with pole set ZP.

This result is based on a theorem of S. Steinberg [28]; cf.

[3, Th. 5.5e]. Theorem 4.4 and 4.8 provide the analytic continuation of

R(A ,Z) Pr in the following form.

Corollary 4.11. The analytic continuation to M of

(4.41) - R(A , r (p))p E B(L2 (Sr) , L2 Loc (As)) , e
p p r O,r 2 p

is given by

(4.42) P-1  R E B(L (Q,), L"o (AA,) , M
p.4,r p C,r. 2 o,r 2 p

where B(X,Y) denotes the bounded linear operators from X to Y.

Corollary 4.12. For all grating domains of the class defined in

§1, the point spectrum G0 (Ap) is discrete.

This result follows from Theorem 4.9 and Corollary 4.10.

Corollary 4.13. For all grating domains of the class defined in

§1 one has
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(4.43) ip(Mp ) Ep) C 00 (A) U T

where N+ is the closure of M1 in M
P p p

If a0 (Ap) P then (4.43) means that the poles of Rp.,,r that lie

above the spectrum a(Ap) - [p2,-) must lie above the branch point set

T . The fact that such poles may or may not occur is illustrated by the

two operators A0D and A0 corresponding to the degenerate grating. For

A0  spaatonofvaiale lad t acostucio o te renD
function (= kernel of the resolvent R(AD,z)) which can be written

GD (XX ' ,psz)

(4.44)

-i ei(P +M)(x- x')(z-(p+m)2)l/2sin (Z_(P) 2) 1/2 ei(Z-(p )2)1/2
mEZ

where y< - Min (y,y'), y> Max (y,y'). The analogous calculation for

A0 gives

• GN0 (X,X' ,z)

(4.45)

i e i(p't-) (x-x') -i22 i(z-(p'm) 2 )" 2 y
- e (z-(p+m)2)- 1/2 cos (z-(p _)2)"/ y< e Y>

mEZ

In the first case R(AD,z) has no poles for real z - A ± iO 6 [p2 ,_). In

the second case R(Aoz) has a simple pole at each of the points

Tze± iO b.I The following two theorems are implied by Theorems 4.4 and 4.6.
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Theorem 4.14. Let

U {(p)~E} U {(p, )(p ()Ea(A prl
-l/2<p51/2  -l/2<p<1/ 2

(4.46)

Then M-E is open in M and

(4.47) (p,) * Rp,,r 6 B(L2 (ao,r))

is continuous on M-E.

Theorem 4.15. The mapping

(4.48) (p,) P p , R e B(L (a ),L1 , oc(A l))p,4,r p, ,r 2 o,r '2

is continuous on M-E.

A direct consequence of Theorem 4.15 that is needed below is

Corollary 4.16. Let K be any compact subset of M-E and let

r' > r > h. Then there exists a constant C = C(K,r,r') such that

(4.49) P-1  R fai < C If!
p,4,r Rp, ,r i;A;o,r - o,r

for all (p,C) E K and all f E L2 (ao,r).

A Limiting Absorption Theorem. In the remainder of this report

the point will be restricted to M+, the closure of M+ in M . To
p p

simplify the notation points 4 e M will be identified with their images
p

r W - z C - [p2,-) and the points of a#+will be denoted by X ± i0,
p p

where A e [p2,o). With this notation the operators

(4.50) P-i R r B(L ( ),L ° (Al))p,X-ia, r p,X±ia,r 2Q~
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are defined and continuous for all X ± ia G - . Note that by
p p

Corollary 4.13

(4.51) a(Ap) - 0(A) -T C r( p - Zp)
pp p p p p

Now let f 6 L2('o° r) and define

(4.52) uP(,p,) - I R f E Fp,A-io,r p,X±io,r p,±ie,r

Then, in particular,

(4.53) u+(.,p,X) E D(A c ) , and
- p

(4.54) A U+ + X u+ - f in

Moreover, Tr ( i0) X A for all X E a(A p) and

w P+m(A io) _ ±(A _ (p + m)2)l12 if X > (p + m) 2

(4.55)

S( ± iO) - i((p + M) 2 
- X)1 12 if A < (p + M)2

P-+m

Hence, the Fourier series (4.28) of u+ have the form

u(xyPA)c e i(p+m)x e±iy(x_(p+Im)2) 1/2
u(yp,)= cmee

(p+M) 2<X

(4.56)

+ c ±e i(p4 m)x e-y((p+M)2_X) 1/2+ cm

(p+m) 
2>X

Thus u+ and u are the outgoing and incoming solutions, respectively, of

the boundary value problem (4.53), (4.54). Moreover, they are uniquely

ddetermined by these conditions, by Theorem 2.1, provided

)-
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(4.57) 6 a(A) - a(A)p -T

The final result of this section is a uniform bound for the

functions

(4.58) p- I RX ~ f e Lo('

which may be formulated as follows.

Corollary 4.17. Let I w a,b] satisfy

(4.59) ICcr a(A) CF o(A)- T

and let p, 009y r and r' satisfy -1/2 < p < 1/2, a0 > 0 and r' > r > h.

Then there exists a constant C =C(I,p,a 0 ,r,r'1) such that

(4.60) HP1  R fi CfP,XA-ia,r p ,X±ia,r 1;A;o,rt - C fo,r

for all X E 1, 0 < a < uo and all f E L( ,

This result is a direct consequence of Corollary 4.16.



§5. The Eigenfunction Expansions for AP
This section presents a construction, based on the limiting

absorption theorem of §4, of the diffracted plane wave eigenfunctions

_+(X,p4n,q) and a derivation of the corresponding eigenfunction

expansions for A . For brevity the derivation is restricted to the

cases for which a 0 (Ap) = p. The modifications that are needed when

o0 (Ap) 0 are indicated at the end of the section.

Throughout this section p E (-1/2,1/2] is fixed, m e Z and q > 0.

4O(X,p+m,q) denotes the generalized eigenfunction for Ap ; that is, one

of the functions (3.25), (3.26). The corresponding outgoing and incoming

diffracted plane waves for Ap are characterized by the properties

(5.1) 0+(.,p~m,q) e D(Ap°c)

p

(5.2) (a + W 2 (p+m,q)) +(X,p+m,q) = 0 in Q2

(5.3) +(X,p+n,q) = 40(X,p-m,q) + f_(X,p+m,q) , y > h

where 4 (resp., 0') is an outgoing (resp., incoming) diffracted plane

wave in Q. These properties imply the symmetry relation

(5.4) 0_(X,p+m,q) - 0+(X,-p-m,q)

Hence it will be sufficient to construct the functions 0+(X,p4m,q).

To construct $+ fix an r > h and introduce a function

C[0,oo) such that J'(y) 0 0, 0 < J(y) 1, J(y) 0 for

0 < y < (h + r)/2 and J(y) - I for y > r. Next define the function

04(X,p+m,q) for all X 6 Q by

47

=M
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(5.5) 4b+(X,p4m,q) j(y) 0o(X,p+m,q) + O4(X,p+m,q) , X C

Then (5.1), (5.2), (5.3) imply that 0+ is characterized by the properties

(5.6) 0 (.,p4m,q) E D(A p° )
p

(5.7) (A + w2 (p+m,q)) ;(X,p+m,q) - -M(X,p+m,q) in it

(5.8) O (X,p+m,q) is an outgoing diffracted plane wave.

The function M in (5.7) is defined for all X E R2 , p + me R and q > 0 by

M(X,p+m,q) = (A + W 2 (p+m,q)) j(y) 0 0 (X,p+m,q)

= j"(y) 4o(X,p+m,q) + 2 j'(y) D2 4o(X,p+m,q)

and has the properties

00

(5.11) M(x+2r,y,p+m,q) = exp {2Trip} M(x,y,p+m,q)

(5.12) supp M(-,p+m,q) C {X I (h + r)/2 < y < r}

It follows that M(.,p+m,q)I r L2( 0 ,) and hence (5.6), (5.7), (5.8)
0 ,r

can be integrated by means of the analytic continuation of the resolvent

of A defined by (4.50). More generally

p

(5.13) 0'(.,p+m,q,z) - P- R M(.,p+m,q) E D(A_ ° c )

p,z,r p,z,r p

I Aoc
and z -I0 '(.,p+m,q,z) e L2  (A,Q) is continuous for all q > 0 and

Z CM- M Hence, 0'(.,pfm,p,X+i0) E D(A oc) satisfies (A + X)OF - 0
p p"

in Q and the outgoing radiation condition (4.56) for all X E (p2,o)_ T
p
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In particular, the solution of (5.6), (5.7), (5.8) is defined by

(5.14) d+(-,p+m,q) - 0'(-,p+m,q,W2 (p+m,q) + iO)

for all q E RO - Emvp where

(5.15) Em~p - {q > 0 I w2(p+m,q) E T .

Note that E is a countable subset of R0 - (0,-) with no finite limit

m,p

points.

The diffracted plane wave 4+(X,p+m,q) is defined by (5.5),

(5.13) and (5.14) and one has

Theorem 5.1. Let G be a grating domain of the class defined in

§1 and let a0(Ap) = 0. Then there exist unique diffracted plane wave

eigenfunctions 0+(X,p+m,q) for each p E (-1/2,1/2], m E Z and

q E R0 - Emp Moreover, q - 0+(.,p+m,q) E L'loc(AQ) is continuous

for q E Ro - E

The uniqueness follows from Theorem 2.1 and ao(Ap) = 0. The

continuity is a consequence of Theorem 4.15.

The functions

(5.16) (X,p+m,q,z) - j(y) *0 (X,p+m,q) + *'(X,p+m,q,z) CE D(A 
° ) ,

p

which are defined for p r (-1/2,1/2], m E Z, q > 0 and z E M+ - Z will
p p

be used in deriving the eigenfunction expansions for 4+ and 0-. They

will be called approximate eigenfunctions of Ap because

(5.17) (A + z) O(X,p+m,q,z) - (z - 2 (p4-m,q)) j(y) 4o(X,p+m,q)

and
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(5.18) (X, p+m,q,W 2(p+m,q) + iO) 0+(X,p+m,q)

Construction of the Spectral Family of A . The selfadjointp

operator A in L2 (Q) has a spectral family {H (p) I p > p2} which is
p p

continuous when 0(A) f . The spectral measure Hp (I) = Hp (b) - p (a)

of an interval I = [a,b] will now be calculated by means of Stone's

formula

(5.19) 11 (1)f 2 = lim IR(A X ia) 1 2 dX
p p

and the eigenfunctions + Only the main steps of the calculation will

be given because a detailed presentation of the analogous calculation

for exterior domains was given in [34].

To begin it will be assumed that I C [p2,. ) - T and f E Lc().
p2

Note that if j(y) is the cut-off function of (5.5) then

(5.20) 1(l - j2(y)) R(A ,Z) f(X)l < Xr(y) iR(Az f(X)1 2

where Xr is the characteristic function of [O,r]. Since lim R(A ,X±ia)f

exists in L2(M,r ), uniformly for X E I, it follows that

(5.21) f (1 - j2 (y)) IR(Ap,_X±ia) f(X)12 dX = 0(l) , a - 0+

uniformly for X E I. Define a linear operator J L2 (0) L2 (B0 ) by

= j(Y) f(X) X E S
(5.22) J f(X) -<

0 X E B0

Then IN J-I and (5.21) implies
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(5.23) R(A p,z)fl 2 - 1J R(A p,z)f 2 + 0(1) ,Im z 0

uniformly for Re z E I. Next, Parseval's relation (3.29) for A09 p and

(5.23) imply

(5.24) IR(A ,z)f1 2 = I I(J R(A ,z)f)- (p+rM,') 2 + 0(i), Im z 0,
mEZ p

uniformly for Re z e I. To relate this to the eigenfunctions 0+ define

(5.25) i(p+rqz) = Q(X,p+m,q,-i) f(X) dX, f e L 2m(n)

and no te

cornLemma 5.2. For all f E L2 (0) one has

(5.26) f(p+m,q,z) , (w2(p+m,q) - z) (J R(Ap z)f) o (p+m,q)

A heuristic proof of (5.26) is contained in the following formal

calculations, based on (5.17).

i(p+rqz) R(Apj)(A , - E) (X,p+m,q,if) f(X) dx

(5.27)

f a (W2(p-Hn,q)- z) J(y) 0 (X,p+m,q) R(ApZ) fMX) dX

Cw2(pftq)-z) I 4o(X,p+m,q) J(y) R(A ,Z) f(X) dx
Bo

- (w2(p+m,q)-z) (J R(A ,z)f); (p+m,q)

The calculation is not rigorous because the presence of the term J-00 in
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(5.16) implies that (-,p~m,q,z) D(A ).A rigorous but longer proof
p

may be given by the technique of [34, p. 94].

Combining (5.24) and (5.26) gives

(5.28) OR(A ,z )f11 2 = Pml, Il + 0(1), un z -~0,
p IIZW?(~' -1

uniformly for Re z E I. Hence, putting z =X±iaF, multiplying by a/wr

and integrating over XE I gives

.J, Tr(,~iTf1 dX I Jc J l J P+M ±ia) 2Td
PRApI ~ TYfI X rnE (-w'(p+m,q)) 2+G2 dd + (a)

(5.29)

00 CF fP M q, X± .w2 p i )2 12 dX) dq+ O(a)

by Fubini's theorem. The determination of H p (I) will be completed by

calculating the limit for a -~ 0 of the last equation. Note that the

continuity of the approximate eigenfunctions (5.16) for q > 0,

z E M - E (cf. (5.13)) implies that i(p-Im,q,X±ia) is continuous for

q > 0, X (= [p2,_o) - Tpa > 0. Thus if one defines

(5.30) f+(p~m,q) = f(p+m,q,W2 (p+m,q) :P iO), q E R0  E E~

cmop

then for all f E L2om(Q)

(5.31) f+(p+M,ql) - +(X,p+m,q) f(X) dx:

andZ

(5.32) i 4(p+m,-) e C(R0 - E mo
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The calculation of the limiting form of (5.29) will be based on the

following two lemmas.

Lemma 5.3. For every f E L2m (Q) and every closed interval

I c [p2 ,-) - T one has

(5.33) lim f lf(p+m,q,X±ia)1 2 dA
G533 0i (X-_ 2 (p+m,q)) 2 +o 2  (p+m.q)f(p+m,q)
0 o + I

for all q E - E where xI(X) is the characteristic function of I,

m~p

normalized so that X (a) = Xl(b) = 1/2.

Lemma 5.3 follows from the continuity of f(p+m,q,X±io) and well-

known properties of the Poisson kernels; cf. [34, p. 101].

Lemma 5.4. For every f E Lom(Q), every closed interval

I C [pZ,o) Tp and every 0 > 0 there exists a constant C - C(f,,o 0)

such that

(5.34) f(p+m,q,A±ia)I2 dq < C
mEZ 0

for all p e (-1/2,1/2], X 6 I and a E [o,o0].

This result is the analogue of (34, Lemma'6.8, p. 103]. A full

proof, based on Corollary 4.17, is given in (38].

The limit of equation (5.29) for a - 0 may now be calculated.

Lemma 5.3 gives the limits of the inner integrals in (5.29). Term-wise

passage to the limit can be justified by Lemma 5.4 and Lebesgue's

dominated convergence theorem; see [34] for details. The result is,

by (5.19),

(5.35) l p (I)fII 2  Z XTl('u 2(p+m,q)) lf+(p+m,q)l 2 dq
Z0
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corn
for all f E L2  (9) and I c [p2,a°) - T where f+(p+m,q) is given by

(5.31).

The Eigenfunction Expansions for A . The eigenfunction expan-
p

sions for Ap based on 0+(X,p+m,q) and 0_(X,p+m,q) can be derived from

(5.35) and the spectral theorem by standard methods; cf. [34, p. 109ff].

Only the results are given here. Details may be found in [34] and [38].

To begin note that since o0 (Ap) - the restriction
p

cornI c [p2,-o) - Tp can be dropped; (5.35) is valid for f E L2  (Q2) and all

I C [p2 ,-o). Making I [p2 ,-o) then gives the Parseval relation

(5.36) 1f 2L  = Uf+(p+m,.)1 2

mEZ -

cornfor all f E L2  (Q). Together with (5.32) this implies that for

cornf E L2 m(),

(5.37) f+(p+m,)E C(RQ -_E,) n L2 (R0 ).

A standard density argument then implies

Theorem 5.5. For all f E L2(Q) the limits

(5.38) i+(p+m,q) =-L2 (R0)-lim f 0+(X,p+m,q) f(X) dX
M- S1o ,M

exist and (5.35), (5.36) are valid for all f E L2(Q).

An eigenfunction representation of the spectral family can now

be obtained from (5.35) by the usual polarization and factorization

arguments. In this way one obtains

Theorem 5.6. For all f E L2(S) one has

(5.39) flp (P) f(X) - (p+MI2 fi j-(p+m) 2 )1 / 2 4+(Xpmq) i+(pmq) dq= (X~~m~) (pm~q d

...... ._ ..-
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and hence

(5.40) f(X) L2 (0)-lim 0 J +(X,p+m,q) f+(p+m,q) dq

Finally, define linear operators

(5.41) D+ L2() -L2(Ro)

-p mEZ

by

(5.42) (+.p f - {f+(p+m,.)J m E Z}

Then P+,p and _ p are spectral mappings for A p in the sense of

Theorem 5.7. For every bounded, Lebesgue-measurable function

T(A) defined on p2 < X < - one has

(5.43) (D±,p T(Ap)f)m = T(W2(p+M,.))(+-,pfOm , mE Z

where T(A p) is defined by the spectral theorem.

Finally, the orthogonality and completeness of the generalized

eigenfunctions 0+ is expressed by

Theorem 5.8. The operators 4+,p and (D are unitary.

It is clear from Parseval's relation (5.36) that 4+.p are

isometries which proves the completeness relation

(5.44) O+'p (_+,p - 1

The surjectivity of D±,p which is equivalent to the orthogonality

relation

(5.45) 0,P ±,p
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is not a consequence of the spectral theorem. A proof of (5.45) by the

method introduced in [34, p. 112ff] is given in [38].

Operators A that have Point Spectrum. It was shown in §4 that,P

in general, C0 (Ap) is discrete. Let JC0 be the subspace of L2 (§2) spanned

by the eigenvectors of Ap and let dim 1C0 - N(p)- I < 0. Let

{X(p) I 1 < j < N(p)} be the eigenvalues, repeated according to their

multiplicity and enumerated so that X (p) < Xj+1 (p). Let

{4j(X,p) I I < j < N(p)} be a corresponding orthonormal set of

eigenfunctions.

Proceeding as before it is found that the diffracted plane waves

+(X,p+m,q) can be constructed and Theorem 5.1 holds with

(5.46) E p = {q > 0 1 w2 (p+m,q) e u ayo0 (Ap)}

which is still a countable set with no finite limit points. Similarly,

the spectral family {I ()} still satisfies (5.35) for f E L2  (p) if

I c [p2,To) - T - a0(Ap). It follows that H" (I) differs from (5.39) only
p p

by the projection

(5.47) 0 Mj(xp) f (p) f f (p) = ( (. ,p),f 126)

and Parseval's relation and the eigenfunction expansion become

N-1

(5.48) lfI2 I IN- (p)12 + I mi (p+m,.)1 2 , f e L2 (2)
j =l " mZ -

and

N-1 0-
(5.49) f(X) = Pb(X'p) f (p) + f J +(X,p+m,q) f+(p+m,q) dq

-EZ -
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convergent in L2 (Q). The form of the spectral family implies that AP

has no singular continuous spectrum : L 2() - N0 Nac' where *ac is the

subspace of absolute continuity for Ap [17, Ch. X]. Finally, Theorem

5.8 must be modified to state that D+,p and _ are partial isometries

with initial set Xc and final set Z l L2 (R0 ):
ac

(550 -P P -i
(5.50) ±,p ±,p ac ' ±,p ±,p

where Pac is the orthogonal projection of L2(n) onto Xac



§6. The Rayleigh-Bloch Wave Expansions for A.

This section presents a construction, based on the results of §5,

of the R-B diffracted plane wave eigenfunctions P(X,p,q) and a deriva-

tion of the corresponding R-B wave expansions for A. For brevity the

derivation is restricted to the cases for which A has no surface waves;

that is, c0 (Ap) - * for all p. The modifications that are needed when
p

there are surface waves are indicated at the end of the section.

In this section 0(X,p,q) denotes the R-B wave eigenfunction for

A0 ; that is, one of the functions (1.33), (1.34). The defining proper-

ties of 4±(X,p,q) can then be written

(6.1) i,(*,p,q) E D(Atoc) (p,q) E R0 ,

(6.2) (A + w2 (p,q)) 4±(X,p,q) - 0 in G ,

(6.3) i (X,pq) 40 (X,p,q) + i.(X,p,q) in 2

where P (resp., 4) is an outgoing (resp., incoming) R-B wave for G.

The construction of *, will be based on the discussion at the

end of §3. Thus if (p,q) C R and p -p 0 + m where p0 E (-1/2,1/2] and

m E Z then ±(X,p,q) are defined by

(6.4) i±(X,p,q) - OP0(Xp 0 +mq) ,

or, more explicitly,

(6.5) t±(x,y,p,q) exp {27ikp0 } *4 (x-2rQ,y,p0+m,q) , (x,y) E Q

Theorem 5.1 then implies

59
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Theorem 6.1. Let G be a grating domain of the class defined in

§1 and let A - A(G) have no surface waves. Then there exist unique R-B

diffracted plane waves *,(X,p,q) for each (p,q) E R- E, where E is the

exceptional set (2.30). Moreover, the mapping (p,q) i±(.,p,q)

E L29'(A,G) is continuous for (p,q) e - E.

The principal step in the proof of Theorem 6.1 is to show that

p, defined piece-wise by (6.5), satisfies (6.1). This may be done by

a simple distribution-theoretic calculation based on the p-periodic

boundary condition for 0±. Details are given in [38]. The uniqueness

statement follows from Theorem 2.1 since G0(Ap) = p for all p is

assumed.

The R-B wave expansions for A will now be derived from the

eigenfunction expansions for Ap of §5. The first step is to establish

com
Parseval's relation for A. The special case of functions f E L2  (G) is

treated first.

com
Theorem 6.2. For all f E L2  (G) define

(66 pq R2  E

(6.6) f+(p,q) fG f +(X,p,q) f(X) dX , (p,q) E - E

Then

(6.7) f E C(RO - E) n L2(R ) , and

(6.8) IfIL2(G )  
=  If..L2(R)

Proof. The finiteness of f.(p,q) for (p,q) 6 R2 - E and the

property f± E C(RO - E) follow from the last statement of Theorem 6.1.

To establish the rest of the theorem note the following identity for

com2functions f 6 L2 (G) and points (p,q) E R - E.
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A f
f (p,q) = ,(X,p,q) f(x) dX

(6.9)

- f~t) 4(X,p,q) f(X) dXEz f Q(9.) -

f ,+(x+2 i,y,p,q) f(x+21r1,y) dxdy

I f *+(x,yp,q) e- 27i-p f(x+27rty) dxdyEz Q

=f +(x,y,p,q) e-27i9P f(x+27rt,y)J dxdy
- jZ

- [ (x,y,p,q) F(x,y,p) dxdy

where

(6.10) F(x,yp) - e-  f(x+2"£,y) , (x,y) e

Note that all the sums in (6.9) are finite when f ( L2Om(G). Moreover,

(6.10) is a Fourier series in p with a fixed finite number of non-zero

terms for all (x,y) 4 fQ.

Equation (6.9) establishes a relation between the eigenfunction

expansions for A and A . Thus replacing p in (6.9) by p + m with

p e (-1/2,1/2] and m E Z one has

(6.11) f:(p+M,q) F±(p+m,q,p)

in the notation of §5. In particular, Parseval's relation for A p

applied to F(',p), and (6.11) gives

'* 1



62

(6.12) IF(X,p) 12 dX ,^ J If+(p+m,q)I2 dq
mEZ o

Noting the continuity of p - F(',p) E L2 (Q) and integrating (6.12) over

p E (-1/2,1/2] gives

1/2 f IFJ- 1/2 - 1J FX) 2 dX dp = I J-1/2 Jo Iff(p+m,q) dqd

(6.13)

= JR If+(p,q) dpdq = 'f+±L 2 (R0)

In particular, f+ E L2 (R2) which completes the proof of (6.7). To

verify (6.8) note that Parseval's formula for Fourier series implies

that

,1/2

(6.14) F IF(X,p) 12 dp I lf(x+27r2,y)12 , X E
f-1/2 RZ

where the sum has a fixed finite number of terms for all X E 2. Inte-

grating (6.14) over X e f and applying Fubini's theorem gives

IF(X,p)[2 dX dp f J (f(x+27Zy)(2 d
"-1/2 nl REZ S1

(6.15) z [  Jn(t) If(X)[ 2 dX
iez f

-f If (X) 12 d I f, 2

G ()1 L2(G)

Combining (6.13) and (6.15) gives (6.8).
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The extension of Parseval's relation to all f E L2 (G) follows

from Theorem 6.2 by a standard technique using the denseness of Lcom(G)

in L2 (G). Thus, writing

(6.16) GM - G () {X I x 2 + y2 < M2}

one has

Corollary 6.3. The limits

(6.17) f±(pq) - L2(R )-lim f ,(X,p,q) f(X) dX
GM

exist and Parseval's relation (6.8) holds for all f E L2 (G).

A representation of the spectral family {H(U) I P > 01 of the

grating propagator A will now be derived from Corollary 6.3. The key

fact is described by

Theorem 6.4. The resolvent R(A,z).- (A - z)-1 of the grating

propagator A satisfies the relation

(6.18) -R(A~z)fI( - f dpdq
Az L2 (1 0 1 (p,q)-z1 2

for all f e L2(G) and all z 6 C - [0,-).

To prove Theorem 6.4 it is enough to verify (6.18) for all

f 6 L2om(G). The idea for doing this is to define

(6.19) u(X) - R(A,z) f(X)

and to apply Parseval's relation to vM =ku where E C'(R7). For a

suitable choice of OM one has

--MO
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(6.20) VH = R(A,z)(f + gM)

where

(6.21) gM W -2Vu • VO - u OM

and

(6.22) VM+(p,q) (f+(p,q) + gM(p,q))/w2 (p,q) - z

whence

^ ^ 2

(6.23) NI,4 R(A,z)fl - I (f+ + A +)/w - zI

Passage to the limit M - - then gives (6.18). For the case of the

Dirichlet boundary condition one may take M(X) = p(IXI - M) where
6 C°(R) satisfies *(T) -1 for T < 0 and T) 0 for T > 1. For the

case of the Neumann boundary condition must be chosen more carefully,

using the condition G E S, to ensure that v M satisfy the boundary

condition. The details of the construction are given in [38].

The R-B wave expansions for A follow easily from Corollary 6.3

and Theorem 6.4. They are formulated as

Theorem 6.5. For all f E L2 (G) the spectral family

(11(p) I P > 01 of A satisfies

(6.24) 1(14) f(X) - f 4+(X,p,q) f,(p,q) dpdq

where

(6.25) DIJ R' n ((p,q) I p2 + q < I}
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In particular, every f E L2(G) has the R-B wave expansion

(6.26) f(X) = L2(G)-lim f p±(X,p,q) f(p,q) dpdq
M_0 DM

The relation (6.24) is a direct consequence of the relation

(6.27) I L()fI2(G) - 1R2 x1(w
2 (p,q)) If,(p,q)12 dpdq

where I is a subinterval of [0,-) with characteristic function XI.

(6.27) follows easily from (6.18) and Stone's formula. Note that (6.27)

implies the absolute continuity of the grating propagators.

To formulate the orthogonality and completeness relations for

the R-B wave expansions define linear operators

(6.28) (D L2(G) - L2(RO)

by

(6.29) ± f+f

Then (P+ and $_ are spectral mappings for A in the sense of

+!

Theorem 6.6. For every bounded,.Lebesgue-measurable function

T(X) defined on 0 < X < -

(6.30) (D ± T(A) - T(w'2()) (D

where '(A) is defined by the spectral theorem.

Moreover, one has

Theorem 6.7. The R-B wave expansions are orthogonal and complete

in the sense that (D and D_ are unitary operators:

Is . .... I
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(6.31) + + 1 and 0+ + = 1

Relations (6.30) and the completeness relation + 0+ 1 follow

easily from the spectral theorem. The orthogonality relation 0+ + = 1

can be deduced from the corresponding property of O± , Theorem 5.8.

Indeed, it is sufficient to prove that

(6.32) (+ f - f,f) = 0

for all f in a dense subset of L2 (R2). This may be verified by direct20

calculation using f E CO(R2 - E) and the orthogonality relation for p.

The details are given in [38].

Operators A that admit R-B Surface Waves. It was shown in §2

that for each p E (-1/2,1/2] A may have R-B surface waves P(X,p) and

eigenvalues X.(p) with x-momentum p. The functions 4.(X,p) = 4i(X,p) I

are precisely the eigenfunctions of A . The principal difficulty in
p

constructing an eigenfunction expansion for A in this case is in con-

structing families of R-B surface waves iP(X,p) and eigenvalues X.(p)

whose dependence on p is sufficiently regular. The "axiom of choice"

definition (independent choice for each p) in inadequate to give even

measurability in p. This was pointed out in the author's paper on the

analogous, but simpler, case of Bloch waves in crystals [36].

If 3G is a union of smooth curves (class C3) then the Green's

functions (4.44), (4.45) can be used to construct an integral equation

for the eigenfunctions (X,p). In this case the method of [36] can be

used to construct "almost holomorphic" families [01(X,p)}.

In the general case there is a one-to-one correspondence between

eigenfunctions 01(X,p) of Ap and eigenfunctions 81(X,p) of Ap,;,r with
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eigenvalues Tr p() E [p2,-) given by e.(',p) = Pp, ,r (-,p). The

eigenvalues of A are isolated, with finite multiplicity, and may

be studied by the methods of analytic perturbation theory (Kato [17,

Ch. 7]). These problems will not be pursued here.

If a sufficiently regular family of R-B surface waves for A has

been constructed the eigenfunction expansions for A may be derived by the

method introduced above. Thus, defining ij(X,p) E 0 when j > N(p),

equation (6.12) must be replaced by

(6.33) F(X,p) 2 dX = j(p) 2 + f Jtf+(p+m,q) 2 dq
j 1 mEZ 0

where

(6.34) f.(p) = iP(X,p) f(X) dX

Integration over p E (-1/2,1/2] gives the Parseval relation

(6.35) q = 112  + Hi fl 2

L2(G) L2(-1/2,1/2) L2(R2)j-1

The corresponding representation of the spectral family is

Hl(Mi) f(X) - [f< j(Xp) f4 (p) dp
(6.36) '-1/2 AX (p)<]i(6.36)

+ fJ +(X,p,q) f+(p,q) dpdq
DP
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§7. Concluding Remarks.

It is clear that the methods developed in this report are

applicable to diffraction gratings in R 3 (and in Rn , n > 3). They are

also applicable to gratings with holes, as in Alber [3] where the

grating Rn - G is a periodic structure contained in a slab Rn and
0 ,h

G is connected. The changes needed to treat these cases are primarily

notational. The same methods can also be applied to the physically

important cases of dielectric gratings in electromagnetic theory and

elastic gratings in acoustics.

The most important unsolved problems for diffraction gratings

concern the R-B surface waves. Gratings that admit such surface waves

would presumably be good waveguides for signals generated near the

grating surface. Geometric criteria for the existence and non-existence

of such waves would be of great interest for applications.
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